Visualization Gallery
NOTE - API Design Documentation: This gallery represents the intended visualization API for Mycelia. Most plotting functions shown are planned but not yet implemented. This serves as:
- A design specification for visualization features
- A record of planned capabilities
- Examples of the intended API when implemented
Currently Available: Limited plotting functions including
plot_kmer_frequency_spectra,plot_per_base_quality,bandage_visualize, tree visualization, and taxonomic abundance plots. See source code insrc/plotting-and-visualization.jlfor implemented functions.
This gallery showcases the intended plotting and visualization capabilities of Mycelia across different bioinformatics analysis workflows.
Overview
Mycelia plans to provide comprehensive visualization capabilities for:
- Data Quality Assessment - Evaluate sequencing data quality (partially implemented)
- Sequence Analysis - K-mer analysis and composition (partially implemented)
- Assembly Visualization - Assembly statistics and comparisons (planned)
- Annotation Plots - Gene features and functional summaries (planned)
- Comparative Analysis - Phylogenetics and pangenome visualization (partially implemented)
- Performance Monitoring - Benchmark and resource usage plots (planned)
Data Quality & Preprocessing (Partially Implemented)
FASTQ Quality Assessment
Per-Base Quality Scores (Implemented: plotperbase_quality)
# Plot quality scores across read positions
Mycelia.plot_per_base_quality("reads.fastq")Shows quality degradation patterns typical in sequencing data
Read Length Distribution (Planned)
# Visualize read length characteristics (planned)
length_dist = Mycelia.calculate_read_lengths("reads.fastq")
Mycelia.plot_read_length_distribution(length_dist)Identifies sequencing platform characteristics and potential issues
GC Content Analysis
# Analyze sequence composition bias
gc_data = Mycelia.calculate_gc_content("reads.fastq")
Mycelia.plot_gc_content_distribution(gc_data)Detects contamination and sequencing bias
Coverage Uniformity
# Assess coverage evenness across genome
coverage_data = Mycelia.calculate_coverage("reads.bam", "reference.fasta")
Mycelia.plot_coverage_uniformity(coverage_data)Identifies coverage bias and potential assembly issues
Sequence Analysis & K-mers (Partially Implemented)
K-mer Frequency Spectra (Implemented: plotkmerfrequency_spectra)
# Generate k-mer frequency histograms
kmer_counts = Mycelia.count_kmers("reads.fastq", k=21)
Mycelia.plot_kmer_frequency_spectra(kmer_counts, title="21-mer Frequency Spectrum")Enables genome size estimation and error detection
K-mer Composition Heatmaps
# Visualize k-mer composition patterns
kmer_matrix = Mycelia.build_kmer_composition_matrix(sequences, k=4)
Mycelia.plot_kmer_heatmap(kmer_matrix, title="Tetranucleotide Composition")Reveals sequence composition patterns and contamination
Genome Size Estimation
# Plot k-mer based genome size estimation
estimation_data = Mycelia.estimate_genome_size_from_kmers(kmer_counts)
Mycelia.plot_genome_size_estimation(estimation_data)Provides independent genome size validation
Assembly Visualization (Planned)
Assembly Statistics (Planned)
# Comprehensive assembly quality metrics
assembly_stats = Mycelia.evaluate_assembly("contigs.fasta")
Mycelia.plot_assembly_statistics(assembly_stats)Multi-panel plot showing N50, contig sizes, and quality metrics
Contig Size Distributions
# Visualize assembly contiguity
contig_lengths = Mycelia.get_contig_lengths("contigs.fasta")
Mycelia.plot_contig_distribution(contig_lengths, log_scale=true)Shows assembly fragmentation and contiguity
Assembly Comparison Dot Plots
# Compare assemblies or validate against reference
comparison = Mycelia.align_assemblies("assembly1.fasta", "assembly2.fasta")
Mycelia.plot_assembly_dotplot(comparison)Identifies structural differences and misassemblies
Coverage vs Length Analysis
# Analyze relationship between contig size and coverage
coverage_length_data = Mycelia.calculate_coverage_per_contig("reads.bam", "contigs.fasta")
Mycelia.plot_coverage_vs_length(coverage_length_data)Detects potential contamination and assembly artifacts
Annotation & Gene Features (Planned)
Genome Browser Tracks (Planned)
# Create genome browser-style visualization
annotations = Mycelia.load_gff3("annotations.gff3")
sequence = Mycelia.load_fasta("genome.fasta")
Mycelia.plot_genome_browser(sequence, annotations, region="chr1:1000-5000")Interactive genome browser with multiple annotation tracks
Gene Density Plots
# Visualize gene distribution across genome
gene_positions = Mycelia.extract_gene_positions("annotations.gff3")
Mycelia.plot_gene_density(gene_positions, window_size=10000)Identifies gene-rich and gene-poor regions
Functional Annotation Summary
# Summarize functional categories
functional_data = Mycelia.analyze_functional_annotations("annotations.gff3")
Mycelia.plot_functional_categories(functional_data, plot_type="pie")Overview of gene functional classifications
GO Term Enrichment
# Visualize gene ontology enrichment
enrichment_results = Mycelia.perform_go_enrichment(gene_list, background)
Mycelia.plot_go_enrichment(enrichment_results, top_n=20)Identifies overrepresented biological processes
Comparative Genomics (Partially Implemented)
Phylogenetic Trees (Partially Implemented)
# Multiple tree layouts and styles
# Tree visualization functions available: draw_dendrogram_tree, draw_radial_tree
tree = Mycelia.build_phylogenetic_tree(core_genes)
Mycelia.plot_phylogenetic_tree(tree, layout="circular", show_support=true)Publication-ready phylogenetic trees with branch support
Pangenome Heatmaps
# Gene presence/absence visualization
pangenome_matrix = Mycelia.build_pangenome_matrix(genomes)
Mycelia.plot_pangenome_heatmap(pangenome_matrix, cluster_rows=true, cluster_cols=true)Shows gene distribution across genomes with clustering
Synteny Analysis
# Visualize conserved gene order
synteny_data = Mycelia.calculate_synteny(genome1, genome2)
Mycelia.plot_synteny_dotplot(synteny_data, min_block_size=1000)Identifies chromosomal rearrangements and conserved regions
Population Structure
# Principal component analysis of genomic variation
pca_data = Mycelia.perform_genomic_pca(snp_matrix)
Mycelia.plot_population_structure(pca_data, color_by="population")Reveals population stratification and admixture
Pangenome Accumulation Curves
# Model pangenome size vs number of genomes
accumulation_data = Mycelia.calculate_pangenome_accumulation(genomes)
Mycelia.plot_pangenome_curves(accumulation_data, fit_model=true)Determines if pangenome is open or closed
Performance & Benchmarking (Planned)
Performance Scaling (Planned)
# Benchmark performance across different scales
benchmark_data = Mycelia.run_scaling_benchmark(data_sizes, n_replicates=5)
Mycelia.plot_performance_scaling(benchmark_data, metric="time")Shows computational scaling characteristics
Memory Usage Monitoring
# Track memory usage during analysis
memory_data = Mycelia.monitor_memory_usage(analysis_function, inputs)
Mycelia.plot_memory_usage(memory_data, show_peak=true)Identifies memory bottlenecks and optimization opportunities
Resource Utilization Dashboard
# Multi-metric performance dashboard
resource_data = Mycelia.collect_resource_metrics(benchmark_results)
Mycelia.plot_resource_dashboard(resource_data)Comprehensive view of CPU, memory, and I/O usage
Accuracy vs Performance Trade-offs
# Compare different algorithms or parameters
tradeoff_data = Mycelia.analyze_accuracy_performance_tradeoff(algorithms, datasets)
Mycelia.plot_accuracy_performance(tradeoff_data)Customization and Export
Gallery Organization
The visualization gallery is organized to match typical bioinformatics workflows:
- Start with data quality - Essential first step
- Progress through analysis - Following logical workflow
- End with interpretation - Publication-ready visualizations
- Include performance monitoring - For optimization
Each visualization includes:
- Code example - Complete, runnable code
- Biological interpretation - What the plot tells you
- Customization options - How to modify for your needs
- Best practices - When and how to use effectively
Interactive Examples
For hands-on exploration, see the Tutorials which include executable visualization examples with real data.