Performance Guide

This document is under development. The following sections are planned:

Table of Contents

  1. Memory Requirements
  2. CPU Optimization
  3. Parameter Tuning
  4. Scaling Strategies
  5. Benchmarking Your Data
  6. Hardware Recommendations

Memory Requirements

By Dataset Size

TODO: Add memory usage tables for different genome sizes

  • Small genomes (< 10 Mb):
  • Bacterial genomes (1-10 Mb):
  • Large genomes (> 100 Mb):

Memory Optimization

TODO: Add memory optimization strategies

  • Using memory_limit parameters
  • Streaming vs. in-memory processing
  • Graph sparsity optimization

CPU Optimization

Parallel Processing

TODO: Add parallelization guide

  • Setting JULIA_NUM_THREADS
  • Multi-core assembly strategies
  • Distributed computing options

Algorithm Selection

TODO: Add algorithm comparison

  • Trade-offs between accuracy and speed
  • When to use different assembly methods
  • Parameter selection for performance

Parameter Tuning

Assembly Parameters

TODO: Add parameter tuning guide

  • K-mer size selection
  • Memory limits
  • Quality thresholds

Quality vs Speed Trade-offs

TODO: Add trade-off analysis

Scaling Strategies

Large Datasets

TODO: Add scaling strategies

  • Chunked processing
  • Hierarchical assembly
  • Cloud computing integration

HPC Integration

TODO: Add HPC guidance

  • SLURM job scripts
  • Memory allocation strategies
  • Parallel file systems

Benchmarking Your Data

Performance Metrics

TODO: Add benchmarking guide

  • Runtime estimation
  • Memory profiling
  • Quality assessment

Comparison Tools

TODO: Add benchmark comparison

  • Against other assemblers
  • Quality metrics
  • Resource usage

Hardware Recommendations

TODO: Add hardware recommendations

  • CPU requirements
  • Memory recommendations
  • Storage considerations
  • Network requirements for HPC

This guide will be expanded with specific recommendations, benchmarks, and optimization strategies. For current performance information, see the benchmarking documentation.