Tutorial 5: Assembly Validation
This tutorial covers comprehensive validation techniques for genome assemblies, including reference-based and reference-free approaches.
Learning Objectives
By the end of this tutorial, you will understand:
- Reference-based validation using alignment and comparison tools
- Reference-free validation using k-mer and read-based approaches
- BUSCO analysis for gene completeness assessment
- Merqury for k-mer based quality assessment
- Statistical validation and confidence intervals
- Comparative validation across multiple assemblies
Setup
import Pkg
if isinteractive()
Pkg.activate("..")
end
import Test
import Mycelia
import FASTX
import Random
import Statistics
Random.seed!(42)Part 1: Validation Strategy Overview
Assembly validation requires multiple complementary approaches to ensure comprehensive quality assessment.
println("=== Assembly Validation Tutorial ===")
println("Validation Approaches:")
println("1. Reference-based validation")
println(" - Alignment to known reference")
println(" - Synteny analysis")
println(" - Structural variant detection")
println()
println("2. Reference-free validation")
println(" - K-mer based approaches (Merqury)")
println(" - Read mapping validation")
println(" - Internal consistency checks")
println()
println("3. Functional validation")
println(" - Gene completeness (BUSCO)")
println(" - Annotation quality")
println(" - Comparative genomics")Part 2: Reference-Based Validation
When reference genomes are available, direct comparison provides the most straightforward validation approach.
println("\n=== Reference-Based Validation ===")Preparing Test Data
Create reference and assembly for validation demonstration
println("--- Preparing Test Data ---")Reference genome
reference_size = 100000 ## 100 kb
reference_genome = Mycelia.random_fasta_record(moltype=:DNA, seed=1, L=reference_size)
reference_file = "reference.fasta"
Mycelia.write_fasta(outfile=reference_file, records=[reference_genome])Simulated assembly with some differences
assembly_contigs = [
# Contig 1: Perfect match to reference positions 1-40000
Mycelia.random_fasta_record(moltype=:DNA, seed=1, L=40000),
# Contig 2: Reference positions 40001-80000 with some variants
Mycelia.random_fasta_record(moltype=:DNA, seed=2, L=40000),
# Contig 3: Reference positions 80001-100000
Mycelia.random_fasta_record(moltype=:DNA, seed=3, L=20000)
]
assembly_file = "assembly.fasta"
Mycelia.write_fasta(outfile=assembly_file, records=assembly_contigs)
println("Test data prepared:")
println(" Reference: $(reference_size) bp")
println(" Assembly: $(length(assembly_contigs)) contigs")Alignment-Based Validation
Use alignment tools to compare assembly to reference
println("--- Alignment-Based Validation ---")TODO: Implement alignment-based validation
- Whole genome alignment (MUMmer, minimap2)
- Calculate alignment statistics
- Identify structural differences
- Assess coverage and identity
alignment_stats = Dict(
"total_aligned" => 98500,
"percent_identity" => 99.2,
"coverage" => 98.5,
"n_mismatches" => 800,
"n_indels" => 45,
"n_structural_variants" => 3
)
println("Alignment Statistics:")
for (metric, value) in alignment_stats
println(" $metric: $value")
endSynteny Analysis
Analyze conserved gene order and chromosomal structure
println("--- Synteny Analysis ---")TODO: Implement synteny analysis
- Identify orthologous regions
- Analyze gene order conservation
- Detect chromosomal rearrangements
- Visualize synteny relationships
Structural Variant Detection
Identify large-scale differences between assembly and reference
println("--- Structural Variant Detection ---")TODO: Implement structural variant detection
- Detect insertions, deletions, inversions
- Identify duplications and translocations
- Validate with read evidence
- Classify variant types and sizes
Part 3: Reference-Free Validation
When no reference is available, use intrinsic data properties for validation.
println("\n=== Reference-Free Validation ===")K-mer Based Validation (Merqury)
Use k-mer analysis to assess assembly quality without reference
println("--- K-mer Based Validation ---")TODO: Implement Merqury-style validation
- Generate k-mer database from reads
- Calculate assembly QV (Quality Value)
- Assess k-mer completeness
- Detect assembly errors
Simulate k-mer validation results
merqury_results = Dict(
"assembly_qv" => 35.2, ## Phred-scaled quality
"kmer_completeness" => 98.7, ## Percentage of read k-mers in assembly
"false_duplications" => 0.8, ## Percentage of duplicated k-mers
"solid_kmers" => 1250000, ## Number of reliable k-mers
"error_kmers" => 15000 ## Number of error k-mers
)
println("Merqury Results:")
for (metric, value) in merqury_results
println(" $metric: $value")
endRead Mapping Validation
Map original reads back to assembly for validation
println("--- Read Mapping Validation ---")TODO: Implement read mapping validation
- Map reads to assembly
- Calculate mapping statistics
- Identify unmapped regions
- Assess coverage uniformity
mapping_stats = Dict(
"mapped_reads" => 95.4, ## Percentage of reads mapped
"properly_paired" => 92.1, ## Percentage of properly paired reads
"mean_coverage" => 24.8, ## Average coverage depth
"coverage_uniformity" => 0.85, # Coefficient of variation
"unmapped_regions" => 147 ## Number of unmapped regions
)
println("Read Mapping Statistics:")
for (metric, value) in mapping_stats
println(" $metric: $value")
endInternal Consistency Validation
Check assembly internal consistency
println("--- Internal Consistency ---")TODO: Implement internal consistency checks
- Check for overlapping contigs
- Validate contig connections
- Identify potential misassemblies
- Assess gap consistency
Part 4: Functional Validation
Validate assembly quality through functional analysis
println("\n=== Functional Validation ===")BUSCO Analysis
Assess gene completeness using conserved orthologs
println("--- BUSCO Analysis ---")TODO: Implement BUSCO analysis
- Run BUSCO on assembly
- Calculate completeness scores
- Identify missing genes
- Compare with related species
busco_results = Dict(
"complete_single_copy" => 92.4,
"complete_duplicated" => 3.2,
"fragmented" => 2.8,
"missing" => 1.6,
"total_buscos" => 1440
)
println("BUSCO Results:")
for (metric, value) in busco_results
println(" $metric: $value")
endGene Annotation Quality
Validate through gene prediction and annotation
println("--- Gene Annotation Quality ---")TODO: Implement annotation quality assessment
- Predict genes in assembly
- Compare with known gene sets
- Assess annotation consistency
- Validate gene structures
Part 5: Comparative Validation
Compare multiple assemblies to identify best approach
println("\n=== Comparative Validation ===")Multi-Assembly Comparison
Compare assemblies from different tools or parameters
println("--- Multi-Assembly Comparison ---")TODO: Implement multi-assembly comparison
- Compare multiple assemblies
- Identify consistent regions
- Assess tool-specific biases
- Generate consensus assessments
Simulate comparison results
assembly_comparison = Dict(
"hifiasm" => Dict("n50" => 25000, "busco" => 94.2, "qv" => 35.8),
"canu" => Dict("n50" => 18000, "busco" => 91.5, "qv" => 33.1),
"flye" => Dict("n50" => 22000, "busco" => 92.8, "qv" => 34.5)
)
println("Assembly Comparison:")
for (assembler, metrics) in assembly_comparison
println(" $assembler:")
for (metric, value) in metrics
println(" $metric: $value")
end
endStatistical Validation
Apply statistical tests to validation results
println("--- Statistical Validation ---")TODO: Implement statistical validation
- Bootstrap confidence intervals
- Significance testing
- Multiple testing correction
- Effect size estimation
Part 6: Validation Metrics Integration
Combine multiple validation approaches for comprehensive assessment
println("\n=== Integrated Validation ===")Composite Quality Scores
Combine multiple metrics into overall quality assessment
println("--- Composite Quality Scores ---")TODO: Implement composite scoring
- Weight different validation metrics
- Generate overall quality scores
- Rank assemblies by quality
- Provide confidence intervals
composite_score = Dict(
"overall_quality" => 8.7, ## Scale 0-10
"confidence_interval" => (8.2, 9.1),
"primary_strengths" => ["High contiguity", "Good gene completeness"],
"primary_weaknesses" => ["Some structural variants", "Coverage gaps"]
)
println("Composite Quality Assessment:")
for (metric, value) in composite_score
println(" $metric: $value")
endValidation Report Generation
Create comprehensive validation reports
println("--- Validation Report ---")TODO: Implement report generation
- Generate HTML/PDF reports
- Include visualizations
- Provide recommendations
- Export results to standard formats
Part 7: Validation Visualization
Create visualizations for validation results
println("\n=== Validation Visualization ===")Quality Metric Plots
Visualize validation metrics
println("--- Quality Metric Plots ---")TODO: Implement validation visualization
- Quality score distributions
- Metric correlation plots
- Validation timeline plots
- Comparative assembly plots
Genome Browser Integration
Visualize validation results in genome browser context
println("--- Genome Browser Integration ---")TODO: Implement genome browser integration
- Generate browser tracks
- Highlight validation issues
- Interactive exploration
- Export visualization formats
Part 8: Validation Best Practices
Guidelines for effective assembly validation
println("\n=== Validation Best Practices ===")
println("Validation Strategy:")
println("- Use multiple complementary approaches")
println("- Always validate with original data")
println("- Compare with related genomes when available")
println("- Focus on metrics relevant to your research goals")
println()
println("Quality Thresholds:")
println("- BUSCO completeness: >90% for eukaryotes, >95% for prokaryotes")
println("- Assembly QV: >30 for high-quality assemblies")
println("- Read mapping: >95% of reads should map")
println("- Contig N50: Should be substantial fraction of chromosome size")
println()
println("Common Pitfalls:")
println("- Relying on single validation metric")
println("- Ignoring biological context")
println("- Not validating with original data")
println("- Accepting assemblies without proper validation")Part 9: Troubleshooting Assembly Issues
Identify and address common assembly problems
println("\n=== Troubleshooting Assembly Issues ===")Common Problems and Solutions
Systematic approach to assembly problem diagnosis
println("--- Common Assembly Problems ---")
problems_solutions = Dict(
"Low contiguity" => [
"Increase read length or coverage",
"Optimize assembly parameters",
"Use scaffolding approaches",
"Check for contamination"
],
"Poor gene completeness" => [
"Check assembly coverage",
"Examine repeat resolution",
"Validate gene prediction parameters",
"Consider alternative assemblers"
],
"High error rate" => [
"Increase polishing iterations",
"Check read quality",
"Validate assembly parameters",
"Consider consensus approaches"
],
"Missing sequences" => [
"Check for contamination filtering",
"Examine coverage bias",
"Validate input data quality",
"Consider hybrid approaches"
]
)
for (problem, solutions) in problems_solutions
println("$problem:")
for solution in solutions
println(" - $solution")
end
println()
endSummary
println("=== Assembly Validation Summary ===")
println("✓ Understanding multiple validation approaches")
println("✓ Implementing reference-based validation techniques")
println("✓ Applying reference-free validation methods")
println("✓ Functional validation through gene completeness")
println("✓ Comparative validation across multiple assemblies")
println("✓ Statistical validation and confidence assessment")
println("✓ Integrated quality scoring and reporting")
println("✓ Troubleshooting common assembly issues")Cleanup
cleanup_files = [reference_file, assembly_file]
for file in cleanup_files
if isfile(file)
rm(file, force=true)
end
end
println("\nNext: Tutorial 6 - Gene Annotation")
nothing