Tutorial 5: Assembly Validation

This tutorial covers comprehensive validation techniques for genome assemblies, including reference-based and reference-free approaches.

Learning Objectives

By the end of this tutorial, you will understand:

  • Reference-based validation using alignment and comparison tools
  • Reference-free validation using k-mer and read-based approaches
  • BUSCO analysis for gene completeness assessment
  • Merqury for k-mer based quality assessment
  • Statistical validation and confidence intervals
  • Comparative validation across multiple assemblies

Setup

import Pkg
if isinteractive()
    Pkg.activate("..")
end

import Test
import Mycelia
import FASTX
import Random
import Statistics

Random.seed!(42)

Part 1: Validation Strategy Overview

Assembly validation requires multiple complementary approaches to ensure comprehensive quality assessment.

println("=== Assembly Validation Tutorial ===")

println("Validation Approaches:")
println("1. Reference-based validation")
println("   - Alignment to known reference")
println("   - Synteny analysis")
println("   - Structural variant detection")
println()
println("2. Reference-free validation")
println("   - K-mer based approaches (Merqury)")
println("   - Read mapping validation")
println("   - Internal consistency checks")
println()
println("3. Functional validation")
println("   - Gene completeness (BUSCO)")
println("   - Annotation quality")
println("   - Comparative genomics")

Part 2: Reference-Based Validation

When reference genomes are available, direct comparison provides the most straightforward validation approach.

println("\n=== Reference-Based Validation ===")

Preparing Test Data

Create reference and assembly for validation demonstration

println("--- Preparing Test Data ---")

Reference genome

reference_size = 100000  ## 100 kb
reference_genome = Mycelia.random_fasta_record(moltype=:DNA, seed=1, L=reference_size)
reference_file = "reference.fasta"
Mycelia.write_fasta(outfile=reference_file, records=[reference_genome])

Simulated assembly with some differences

assembly_contigs = [
    # Contig 1: Perfect match to reference positions 1-40000
    Mycelia.random_fasta_record(moltype=:DNA, seed=1, L=40000),
    # Contig 2: Reference positions 40001-80000 with some variants
    Mycelia.random_fasta_record(moltype=:DNA, seed=2, L=40000),
    # Contig 3: Reference positions 80001-100000
    Mycelia.random_fasta_record(moltype=:DNA, seed=3, L=20000)
]

assembly_file = "assembly.fasta"
Mycelia.write_fasta(outfile=assembly_file, records=assembly_contigs)

println("Test data prepared:")
println("  Reference: $(reference_size) bp")
println("  Assembly: $(length(assembly_contigs)) contigs")

Alignment-Based Validation

Use alignment tools to compare assembly to reference

println("--- Alignment-Based Validation ---")

TODO: Implement alignment-based validation

  • Whole genome alignment (MUMmer, minimap2)
  • Calculate alignment statistics
  • Identify structural differences
  • Assess coverage and identity
alignment_stats = Dict(
    "total_aligned" => 98500,
    "percent_identity" => 99.2,
    "coverage" => 98.5,
    "n_mismatches" => 800,
    "n_indels" => 45,
    "n_structural_variants" => 3
)

println("Alignment Statistics:")
for (metric, value) in alignment_stats
    println("  $metric: $value")
end

Synteny Analysis

Analyze conserved gene order and chromosomal structure

println("--- Synteny Analysis ---")

TODO: Implement synteny analysis

  • Identify orthologous regions
  • Analyze gene order conservation
  • Detect chromosomal rearrangements
  • Visualize synteny relationships

Structural Variant Detection

Identify large-scale differences between assembly and reference

println("--- Structural Variant Detection ---")

TODO: Implement structural variant detection

  • Detect insertions, deletions, inversions
  • Identify duplications and translocations
  • Validate with read evidence
  • Classify variant types and sizes

Part 3: Reference-Free Validation

When no reference is available, use intrinsic data properties for validation.

println("\n=== Reference-Free Validation ===")

K-mer Based Validation (Merqury)

Use k-mer analysis to assess assembly quality without reference

println("--- K-mer Based Validation ---")

TODO: Implement Merqury-style validation

  • Generate k-mer database from reads
  • Calculate assembly QV (Quality Value)
  • Assess k-mer completeness
  • Detect assembly errors

Simulate k-mer validation results

merqury_results = Dict(
    "assembly_qv" => 35.2,        ## Phred-scaled quality
    "kmer_completeness" => 98.7,   ## Percentage of read k-mers in assembly
    "false_duplications" => 0.8,   ## Percentage of duplicated k-mers
    "solid_kmers" => 1250000,     ## Number of reliable k-mers
    "error_kmers" => 15000        ## Number of error k-mers
)

println("Merqury Results:")
for (metric, value) in merqury_results
    println("  $metric: $value")
end

Read Mapping Validation

Map original reads back to assembly for validation

println("--- Read Mapping Validation ---")

TODO: Implement read mapping validation

  • Map reads to assembly
  • Calculate mapping statistics
  • Identify unmapped regions
  • Assess coverage uniformity
mapping_stats = Dict(
    "mapped_reads" => 95.4,       ## Percentage of reads mapped
    "properly_paired" => 92.1,    ## Percentage of properly paired reads
    "mean_coverage" => 24.8,      ## Average coverage depth
    "coverage_uniformity" => 0.85, # Coefficient of variation
    "unmapped_regions" => 147     ## Number of unmapped regions
)

println("Read Mapping Statistics:")
for (metric, value) in mapping_stats
    println("  $metric: $value")
end

Internal Consistency Validation

Check assembly internal consistency

println("--- Internal Consistency ---")

TODO: Implement internal consistency checks

  • Check for overlapping contigs
  • Validate contig connections
  • Identify potential misassemblies
  • Assess gap consistency

Part 4: Functional Validation

Validate assembly quality through functional analysis

println("\n=== Functional Validation ===")

BUSCO Analysis

Assess gene completeness using conserved orthologs

println("--- BUSCO Analysis ---")

TODO: Implement BUSCO analysis

  • Run BUSCO on assembly
  • Calculate completeness scores
  • Identify missing genes
  • Compare with related species
busco_results = Dict(
    "complete_single_copy" => 92.4,
    "complete_duplicated" => 3.2,
    "fragmented" => 2.8,
    "missing" => 1.6,
    "total_buscos" => 1440
)

println("BUSCO Results:")
for (metric, value) in busco_results
    println("  $metric: $value")
end

Gene Annotation Quality

Validate through gene prediction and annotation

println("--- Gene Annotation Quality ---")

TODO: Implement annotation quality assessment

  • Predict genes in assembly
  • Compare with known gene sets
  • Assess annotation consistency
  • Validate gene structures

Part 5: Comparative Validation

Compare multiple assemblies to identify best approach

println("\n=== Comparative Validation ===")

Multi-Assembly Comparison

Compare assemblies from different tools or parameters

println("--- Multi-Assembly Comparison ---")

TODO: Implement multi-assembly comparison

  • Compare multiple assemblies
  • Identify consistent regions
  • Assess tool-specific biases
  • Generate consensus assessments

Simulate comparison results

assembly_comparison = Dict(
    "hifiasm" => Dict("n50" => 25000, "busco" => 94.2, "qv" => 35.8),
    "canu" => Dict("n50" => 18000, "busco" => 91.5, "qv" => 33.1),
    "flye" => Dict("n50" => 22000, "busco" => 92.8, "qv" => 34.5)
)

println("Assembly Comparison:")
for (assembler, metrics) in assembly_comparison
    println("  $assembler:")
    for (metric, value) in metrics
        println("    $metric: $value")
    end
end

Statistical Validation

Apply statistical tests to validation results

println("--- Statistical Validation ---")

TODO: Implement statistical validation

  • Bootstrap confidence intervals
  • Significance testing
  • Multiple testing correction
  • Effect size estimation

Part 6: Validation Metrics Integration

Combine multiple validation approaches for comprehensive assessment

println("\n=== Integrated Validation ===")

Composite Quality Scores

Combine multiple metrics into overall quality assessment

println("--- Composite Quality Scores ---")

TODO: Implement composite scoring

  • Weight different validation metrics
  • Generate overall quality scores
  • Rank assemblies by quality
  • Provide confidence intervals
composite_score = Dict(
    "overall_quality" => 8.7,     ## Scale 0-10
    "confidence_interval" => (8.2, 9.1),
    "primary_strengths" => ["High contiguity", "Good gene completeness"],
    "primary_weaknesses" => ["Some structural variants", "Coverage gaps"]
)

println("Composite Quality Assessment:")
for (metric, value) in composite_score
    println("  $metric: $value")
end

Validation Report Generation

Create comprehensive validation reports

println("--- Validation Report ---")

TODO: Implement report generation

  • Generate HTML/PDF reports
  • Include visualizations
  • Provide recommendations
  • Export results to standard formats

Part 7: Validation Visualization

Create visualizations for validation results

println("\n=== Validation Visualization ===")

Quality Metric Plots

Visualize validation metrics

println("--- Quality Metric Plots ---")

TODO: Implement validation visualization

  • Quality score distributions
  • Metric correlation plots
  • Validation timeline plots
  • Comparative assembly plots

Genome Browser Integration

Visualize validation results in genome browser context

println("--- Genome Browser Integration ---")

TODO: Implement genome browser integration

  • Generate browser tracks
  • Highlight validation issues
  • Interactive exploration
  • Export visualization formats

Part 8: Validation Best Practices

Guidelines for effective assembly validation

println("\n=== Validation Best Practices ===")

println("Validation Strategy:")
println("- Use multiple complementary approaches")
println("- Always validate with original data")
println("- Compare with related genomes when available")
println("- Focus on metrics relevant to your research goals")
println()
println("Quality Thresholds:")
println("- BUSCO completeness: >90% for eukaryotes, >95% for prokaryotes")
println("- Assembly QV: >30 for high-quality assemblies")
println("- Read mapping: >95% of reads should map")
println("- Contig N50: Should be substantial fraction of chromosome size")
println()
println("Common Pitfalls:")
println("- Relying on single validation metric")
println("- Ignoring biological context")
println("- Not validating with original data")
println("- Accepting assemblies without proper validation")

Part 9: Troubleshooting Assembly Issues

Identify and address common assembly problems

println("\n=== Troubleshooting Assembly Issues ===")

Common Problems and Solutions

Systematic approach to assembly problem diagnosis

println("--- Common Assembly Problems ---")

problems_solutions = Dict(
    "Low contiguity" => [
        "Increase read length or coverage",
        "Optimize assembly parameters",
        "Use scaffolding approaches",
        "Check for contamination"
    ],
    "Poor gene completeness" => [
        "Check assembly coverage",
        "Examine repeat resolution",
        "Validate gene prediction parameters",
        "Consider alternative assemblers"
    ],
    "High error rate" => [
        "Increase polishing iterations",
        "Check read quality",
        "Validate assembly parameters",
        "Consider consensus approaches"
    ],
    "Missing sequences" => [
        "Check for contamination filtering",
        "Examine coverage bias",
        "Validate input data quality",
        "Consider hybrid approaches"
    ]
)

for (problem, solutions) in problems_solutions
    println("$problem:")
    for solution in solutions
        println("  - $solution")
    end
    println()
end

Summary

println("=== Assembly Validation Summary ===")
println("✓ Understanding multiple validation approaches")
println("✓ Implementing reference-based validation techniques")
println("✓ Applying reference-free validation methods")
println("✓ Functional validation through gene completeness")
println("✓ Comparative validation across multiple assemblies")
println("✓ Statistical validation and confidence assessment")
println("✓ Integrated quality scoring and reporting")
println("✓ Troubleshooting common assembly issues")

Cleanup

cleanup_files = [reference_file, assembly_file]
for file in cleanup_files
    if isfile(file)
        rm(file, force=true)
    end
end

println("\nNext: Tutorial 6 - Gene Annotation")

nothing