Tutorial 4: Genome Assembly
This tutorial covers comprehensive genome assembly approaches, including short read, long read, and hybrid assembly methods, with emphasis on Mycelia's probabilistic assembly and benchmarking against state-of-the-art tools.
Learning Objectives
By the end of this tutorial, you will understand:
- Different assembly algorithms and their applications
- Short read assembly with MEGAHIT and metaSPAdes
- Long read assembly with Flye, Canu, and hifiasm
- Hybrid assembly approaches combining multiple data types
- Mycelia's probabilistic assembly using string graphs and Viterbi error correction
- Assembly quality metrics and their interpretation
- Error correction and polishing techniques
- Handling repetitive sequences and structural variants
- Assembly validation and benchmarking approaches
Setup
import Pkg
if isinteractive()
Pkg.activate("..")
end
import Test
import Mycelia
import FASTX
import Random
import Statistics
Random.seed!(42)Part 1: Assembly Algorithm Overview
Understanding different assembly approaches helps choose the right method for your data type and research goals.
println("=== Genome Assembly Tutorial ===")Assembly Paradigms
Four main approaches to genome assembly:
- de Bruijn Graph - for short reads (MEGAHIT, metaSPAdes)
- Overlap-Layout-Consensus (OLC) - for long reads (Canu)
- String Graph - for long accurate reads (hifiasm, Flye)
- Probabilistic Assembly - Mycelia's approach using string graphs with Viterbi error correction
println("Assembly Algorithm Comparison:")
println("de Bruijn Graph:")
println(" - Best for: Short reads (Illumina)")
println(" - Tools: MEGAHIT, metaSPAdes, SPAdes")
println(" - Strengths: Efficient, handles high coverage")
println(" - Weaknesses: Struggles with repeats, requires error correction")
println()
println("OLC (Overlap-Layout-Consensus):")
println(" - Best for: Long reads (PacBio, Nanopore)")
println(" - Tools: Canu, Miniasm")
println(" - Strengths: Handles repeats, intuitive approach")
println(" - Weaknesses: Computationally expensive, error-sensitive")
println()
println("String Graph:")
println(" - Best for: Long accurate reads (HiFi)")
println(" - Tools: hifiasm, Flye")
println(" - Strengths: Efficient, haplotype-aware, handles complexity")
println(" - Weaknesses: Requires high-quality reads")
println()
println("Probabilistic Assembly (Mycelia):")
println(" - Best for: Any read type with error correction")
println(" - Tools: Mycelia's string graph + Viterbi")
println(" - Strengths: Handles errors probabilistically, adaptable")
println(" - Weaknesses: Computationally intensive for large genomes")Part 2: Data Preparation for Assembly
Proper data preparation is crucial for successful assembly
println("\n=== Data Preparation ===")Simulating Multi-Platform Data
Create synthetic data for comprehensive assembly testing
println("--- Generating Test Data ---")Create a synthetic genome with known structure
genome_size = 50000 ## 50 kb for demonstration
reference_genome = Mycelia.random_fasta_record(moltype=:DNA, seed=1, L=genome_size)
println("Reference genome: $(genome_size) bp")Simulate different read types
short_read_params = Dict(
"coverage" => 30,
"read_length" => 150,
"error_rate" => 0.001,
"description" => "Illumina short reads"
)
long_read_params = Dict(
"coverage" => 20,
"read_length" => 10000,
"error_rate" => 0.05,
"description" => "Nanopore long reads"
)
hifi_params = Dict(
"coverage" => 15,
"read_length" => 15000,
"error_rate" => 0.001,
"description" => "PacBio HiFi reads"
)TODO: Implement multi-platform read simulation
- Generate short reads for MEGAHIT/metaSPAdes
- Generate long reads for Flye/Canu
- Generate HiFi reads for hifiasm
- Create hybrid datasets for Unicycler
- Generate error-prone reads for Mycelia polishing
println("Simulating read types:")
for (name, params) in [("Short reads", short_read_params),
("Long reads", long_read_params),
("HiFi reads", hifi_params)]
println(" $(name): $(params["coverage"])x coverage, $(params["read_length"]) bp, $(params["error_rate"]*100)% error")
endWrite test data
reference_file = "reference_genome.fasta"
short_reads_r1 = "short_reads_R1.fastq"
short_reads_r2 = "short_reads_R2.fastq"
long_reads_file = "long_reads.fastq"
hifi_reads_file = "hifi_reads.fastq"
Mycelia.write_fasta(outfile=reference_file, records=[reference_genome])TODO: Write simulated reads to FASTQ files
- Generate paired-end short reads
- Generate single-end long reads
- Generate single-end HiFi reads
Read Statistics and Quality Assessment
Analyze read characteristics before assembly
println("--- Read Analysis ---")TODO: Implement read analysis
- Read length distribution
- Quality score distribution
- Coverage estimation
- Error rate assessment
Part 3: Multi-Platform Assembly Approaches
Comprehensive coverage of short read, long read, and hybrid assembly
println("\n=== Multi-Platform Assembly Approaches ===")Short Read Assembly
MEGAHIT and metaSPAdes for short read data
println("--- Short Read Assembly ---")Example parameters for short read assembly
short_read_params = Dict(
"megahit_k_list" => "21,29,39,59,79,99,119,141",
"metaspades_k_list" => "21,33,55,77",
"min_contig_len" => 200,
"threads" => 4
)
println("Short read assembly parameters:")
for (param, value) in short_read_params
println(" $param: $value")
endTODO: Implement short read assembly examples
- Run MEGAHIT for metagenomic data
- Run metaSPAdes for complex datasets
- Compare assembly quality metrics
- Evaluate computational requirements
Long Read Assembly
Flye, Canu, and hifiasm for long read data
println("--- Long Read Assembly ---")Example parameters for long read assembly
long_read_params = Dict(
"genome_size" => "5m",
"flye_read_type" => "pacbio-hifi",
"canu_read_type" => "pacbio",
"hifiasm_mode" => "primary",
"threads" => 4
)
println("Long read assembly parameters:")
for (param, value) in long_read_params
println(" $param: $value")
endTODO: Implement long read assembly examples
- Run Flye for various read types
- Run Canu with error correction
- Run hifiasm for HiFi data
- Compare assembly contiguity
- Evaluate error rates
Hybrid Assembly
Unicycler combining short and long reads
println("--- Hybrid Assembly ---")Example parameters for hybrid assembly
hybrid_params = Dict(
"short_read_accuracy" => 0.99,
"long_read_accuracy" => 0.90,
"bridging_mode" => "conservative",
"threads" => 4
)
println("Hybrid assembly parameters:")
for (param, value) in hybrid_params
println(" $param: $value")
endTODO: Implement hybrid assembly examples
- Run Unicycler with paired data
- Compare to short-read-only assemblies
- Evaluate scaffolding improvements
- Assess computational trade-offs
Mycelia's Probabilistic Assembly
String graph approach with Viterbi error correction
println("--- Mycelia's Probabilistic Assembly ---")Example parameters for Mycelia assembly
mycelia_params = Dict(
"k_range" => "21,31,41,51,61,71,81,91",
"error_rate" => 0.01,
"min_coverage" => 3,
"iterative_polishing" => true,
"verbosity" => "reads"
)
println("Mycelia assembly parameters:")
for (param, value) in mycelia_params
println(" $param: $value")
endTODO: Implement Mycelia assembly examples
- Build string graph from reads
- Apply Viterbi error correction
- Perform iterative polishing
- Compare to external assemblers
println("Assembly approaches comparison completed...")Part 4: Assembly Quality Assessment
Comprehensive evaluation of assembly quality
println("\n=== Assembly Quality Assessment ===")Basic Assembly Statistics
Calculate fundamental assembly metrics
println("--- Basic Statistics ---")TODO: Implement assembly statistics
- Contig count and sizes
- N50, N90, L50, L90
- Total assembly size
- Largest contig size
- GC content
Example with placeholder data
assembly_stats = Dict(
"total_length" => 49500,
"n_contigs" => 3,
"n50" => 25000,
"l50" => 1,
"largest_contig" => 30000,
"gc_content" => 0.45
)
println("Assembly Statistics:")
for (metric, value) in assembly_stats
println(" $metric: $value")
endAdvanced Quality Metrics
More sophisticated quality assessment
println("--- Advanced Quality Metrics ---")TODO: Implement advanced quality assessment
- BUSCO completeness scores
- Merqury QV scores
- LAI (LTR Assembly Index)
- Contiguity vs completeness trade-offs
Comparison with Reference
Validate assembly against known reference
println("--- Reference Comparison ---")TODO: Implement reference comparison
- Alignment-based comparison
- Structural variation detection
- Misassembly identification
- Coverage uniformity assessment
Part 5: Assembly Polishing and Error Correction
Improve assembly accuracy through polishing
println("\n=== Assembly Polishing ===")Consensus Polishing
Use original reads to polish assembly
println("--- Consensus Polishing ---")TODO: Implement consensus polishing
- Align reads to assembly
- Identify consensus variants
- Apply corrections
- Iterate polishing rounds
Structural Error Correction
Fix larger structural errors
println("--- Structural Correction ---")TODO: Implement structural correction
- Identify structural variants
- Validate with long reads
- Correct misassemblies
- Handle complex rearrangements
Part 6: Handling Assembly Challenges
Address common assembly difficulties
println("\n=== Assembly Challenges ===")Repetitive Sequences
Strategies for handling repeats
println("--- Repetitive Sequences ---")TODO: Implement repeat handling
- Identify repetitive regions
- Use read-spanning strategy
- Implement gap filling
- Validate repeat resolutions
Heterozygosity
Handle diploid and polyploid genomes
println("--- Heterozygosity ---")TODO: Implement heterozygosity handling
- Haplotype-aware assembly
- Bubble detection and resolution
- Diploid assembly validation
- Phasing strategies
Contamination
Detect and remove contaminating sequences
println("--- Contamination Detection ---")TODO: Implement contamination detection
- Taxonomic classification
- Coverage-based detection
- Compositional analysis
- Filtering strategies
Part 7: Assembly Visualization and Exploration
Create plots and visualizations for assembly analysis
println("\n=== Assembly Visualization ===")Contig Size Distribution
Visualize assembly contiguity
println("--- Contig Visualization ---")TODO: Implement assembly visualization
- Contig size histograms
- Cumulative length plots
- N50 plots
- Coverage vs length plots
Dot Plots
Compare assemblies or validate against reference
println("--- Dot Plot Analysis ---")TODO: Implement dot plot visualization
- Self-alignment plots
- Reference comparison plots
- Synteny visualization
- Structural variant detection
Part 8: Assembly Benchmarking
Compare different assembly approaches
println("\n=== Assembly Benchmarking ===")Multi-Assembler Comparison
Compare multiple assembly tools
println("--- Multi-Assembler Comparison ---")TODO: Implement multi-assembler benchmarking
- Run multiple assemblers
- Compare quality metrics
- Identify best-performing approaches
- Consensus assembly generation
Parameter Optimization
Optimize assembly parameters
println("--- Parameter Optimization ---")TODO: Implement parameter optimization
- Grid search over parameter space
- Quality-based optimization
- Cross-validation approaches
- Automated parameter tuning
Part 9: Best Practices and Recommendations
Guidelines for successful genome assembly
println("\n=== Best Practices ===")
println("Data Requirements:")
println("- HiFi: 20-30x coverage minimum")
println("- Read N50 > 10 kb preferred")
println("- Low contamination levels")
println("- Balanced coverage distribution")
println()
println("Assembly Strategy:")
println("- Start with hifiasm for HiFi data")
println("- Use haplotype-aware mode for diploids")
println("- Validate with multiple quality metrics")
println("- Polish with original reads")
println()
println("Quality Control:")
println("- Check BUSCO completeness (>90% for eukaryotes)")
println("- Validate N50 vs genome size expectations")
println("- Examine contig count (fewer is better)")
println("- Compare with related genomes")Summary
println("\n=== Assembly Summary ===")
println("✓ Understanding assembly algorithms and their applications")
println("✓ Short read assembly with MEGAHIT and metaSPAdes")
println("✓ Long read assembly with Flye, Canu, and hifiasm")
println("✓ Hybrid assembly approaches with Unicycler")
println("✓ Mycelia's probabilistic assembly with string graphs and Viterbi error correction")
println("✓ Comprehensive quality assessment techniques")
println("✓ Assembly polishing and error correction")
println("✓ Handling repetitive sequences and heterozygosity")
println("✓ Visualization and benchmarking approaches")Cleanup
cleanup_files = [reference_file, short_reads_r1, short_reads_r2, long_reads_file, hifi_reads_file]
for file in cleanup_files
if isfile(file)
rm(file, force=true)
end
end
# Note: No assembly output directory was created in this tutorial
assembly_output = "assembly_output" # Define for consistency, but directory doesn't exist
if isdir(assembly_output)
rm(assembly_output, recursive=true, force=true)
end
println("\nNext: Tutorial 5 - Assembly Validation")
nothing