Function Index

Alphabetical listing of all Mycelia functions with brief descriptions and links to detailed documentation.

A

add_sequencing_errors (planned)

Add realistic sequencing errors to simulated reads.

  • Module: Data Simulation
  • Usage: add_sequencing_errors(reads, error_rate=0.01)
  • See: Data Acquisition

analyze_fastq_quality

Comprehensive quality analysis of FASTQ files.

  • Module: Quality Control
  • Usage: analyze_fastq_quality("reads.fastq")
  • See: Quality Control

analyze_functional_annotations (planned)

Analyze functional annotation categories and distributions.

  • Module: Gene Annotation
  • Usage: analyze_functional_annotations("annotations.gff3")
  • See: Gene Annotation

analyze_kmer_connectivity (planned)

Analyze connectivity patterns in k-mer graphs.

  • Module: Sequence Analysis
  • Usage: analyze_kmer_connectivity(kmer_graph)
  • See: Sequence Analysis

analyze_spectrum_peaks

Identify and characterize peaks in k-mer frequency spectra.

  • Module: Sequence Analysis
  • Usage: analyze_spectrum_peaks(spectrum)
  • See: Sequence Analysis

annotate_functions

Assign functional annotations to predicted genes.

  • Module: Gene Annotation
  • Usage: annotate_functions(proteins, database="uniprot")
  • See: Gene Annotation

assemble_genome

Main genome assembly function supporting multiple assemblers.

  • Module: Genome Assembly
  • Usage: Mycelia.assemble_genome("reads.fastq", assembler="hifiasm")
  • See: Genome Assembly

assess_assembly_readiness

Evaluate if sequencing data is suitable for genome assembly.

  • Module: Quality Control
  • Usage: assess_assembly_readiness("reads.fastq")
  • See: Quality Control

B

build_kmer_graph

Construct k-mer overlap graphs from sequences.

  • Module: Sequence Analysis
  • Usage: build_kmer_graph(sequences, k=31)
  • See: Sequence Analysis

build_pangenome

Construct pangenome from multiple genome assemblies.

  • Module: Comparative Genomics
  • Usage: build_pangenome(genome_list, threshold=0.95)
  • See: Comparative Genomics

build_phylogenetic_tree

Construct phylogenetic trees from sequence alignments.

  • Module: Comparative Genomics
  • Usage: build_phylogenetic_tree(alignment, method="ml")
  • See: Comparative Genomics

C

calculate_assembly_stats

Calculate standard assembly quality metrics (N50, L50, etc.).

  • Module: Assembly Validation
  • Usage: calculate_assembly_stats("contigs.fasta")
  • See: Assembly Validation

calculate_codon_usage

Analyze codon usage patterns in coding sequences.

  • Module: Sequence Analysis
  • Usage: calculate_codon_usage("cds.fasta", genetic_code="standard")
  • See: Sequence Analysis

calculate_gc_content

Calculate GC content for sequences or sequence collections.

  • Module: Sequence Analysis
  • Usage: calculate_gc_content("sequences.fasta")
  • See: Sequence Analysis

calculate_genome_complexity

Assess genome complexity using k-mer diversity metrics.

  • Module: Sequence Analysis
  • Usage: calculate_genome_complexity(kmer_counts)
  • See: Sequence Analysis

calculate_synteny

Identify syntenic regions between genomes.

compare_genomes

Comprehensive pairwise genome comparison.

  • Module: Comparative Genomics
  • Usage: compare_genomes(genome1, genome2, method="synteny")
  • See: Comparative Genomics

construct_phylogeny

High-level phylogenetic tree construction interface.

  • Module: Comparative Genomics
  • Usage: construct_phylogeny(core_genes, method="ml")
  • See: Comparative Genomics

count_kmers

Count k-mers in sequences with various options and optimizations.

  • Module: Sequence Analysis
  • Usage: count_kmers("reads.fastq", k=21)
  • See: Sequence Analysis

create_quality_dashboard

Generate interactive quality control dashboard.

  • Module: Quality Control
  • Usage: create_quality_dashboard(quality_data)
  • See: Quality Control

D

detect_contamination_kmers

Identify contamination using k-mer profile analysis.

  • Module: Sequence Analysis
  • Usage: detect_contamination_kmers("sample.fastq", expected_profile)
  • See: Sequence Analysis

detect_host_contamination

Screen for host organism contamination in sequencing data.

  • Module: Quality Control
  • Usage: detect_host_contamination("reads.fastq", "host_genome.fasta")
  • See: Quality Control

download_genome_by_accession

Download genome sequences from NCBI by accession number.

  • Module: Data Acquisition
  • Usage: Mycelia.download_genome_by_accession("NC_001422.1")
  • See: Data Acquisition

E

estimate_genome_size_from_kmers

Estimate genome size using k-mer frequency spectrum analysis.

  • Module: Sequence Analysis
  • Usage: estimate_genome_size_from_kmers(kmer_counts)
  • See: Sequence Analysis

evaluate_assembly

Comprehensive assembly quality evaluation.

F

fasta_list_to_dense_kmer_counts

Generate dense k-mer count matrices from multiple FASTA files.

  • Module: Sequence Analysis
  • Usage: fasta_list_to_dense_kmer_counts(file_list, k=21)
  • See: Sequence Analysis

fasta_list_to_sparse_kmer_counts

Generate sparse k-mer count matrices from multiple FASTA files.

  • Module: Sequence Analysis
  • Usage: fasta_list_to_sparse_kmer_counts(file_list, k=21)
  • See: Sequence Analysis

filter_by_quality

Filter sequencing reads based on quality score thresholds.

  • Module: Quality Control
  • Usage: filter_by_quality("reads.fastq", min_quality=20)
  • See: Quality Control

G

generate_quality_report

Generate comprehensive quality control reports.

  • Module: Quality Control
  • Usage: generate_quality_report("reads.fastq", format="html")
  • See: Quality Control

H

hifiasm_assembly

Run hifiasm assembler with optimized parameters.

  • Module: Genome Assembly
  • Usage: hifiasm_assembly("hifi_reads.fastq", output_dir="assembly")
  • See: Genome Assembly

I

identify_error_kmers

Identify k-mers likely to contain sequencing errors.

  • Module: Sequence Analysis
  • Usage: identify_error_kmers(kmer_counts, min_coverage=3)
  • See: Sequence Analysis

K

kmer_frequency_spectrum

Generate k-mer frequency spectrum from k-mer counts.

  • Module: Sequence Analysis
  • Usage: kmer_frequency_spectrum(kmer_counts)
  • See: Sequence Analysis

N

ncbi_genome_download_accession

Download complete genome assembly packages from NCBI.

  • Module: Data Acquisition
  • Usage: ncbi_genome_download_accession("GCF_000819615.1")
  • See: Data Acquisition

P

plot_assembly_stats

Create visualizations of assembly quality metrics.

  • Module: Visualization
  • Usage: plot_assembly_stats(assembly_data)
  • See: Visualization

plot_kmer_spectrum

Visualize k-mer frequency spectra.

  • Module: Visualization
  • Usage: plot_kmer_spectrum(spectrum, log_scale=true)
  • See: Visualization

plot_phylogenetic_tree

Create phylogenetic tree visualizations.

  • Module: Visualization
  • Usage: plot_phylogenetic_tree(tree, layout="circular")
  • See: Visualization

predict_genes

Predict genes in genome assemblies.

  • Module: Gene Annotation
  • Usage: predict_genes("genome.fasta", method="prodigal")
  • See: Gene Annotation

R

read_fasta

Read sequences from FASTA files.

remove_adapters

Remove adapter sequences from sequencing reads.

  • Module: Quality Control
  • Usage: remove_adapters("reads.fastq", adapter_sequences)
  • See: Quality Control

S

simulate_hifi_reads

Simulate PacBio HiFi sequencing reads.

  • Module: Data Simulation
  • Usage: simulate_hifi_reads(genome, coverage=30)
  • See: Data Acquisition

simulate_random_genome

Generate random genome sequences for testing.

  • Module: Data Simulation
  • Usage: simulate_random_genome(length=100000, gc_content=0.45)
  • See: Data Acquisition

V

validate_assembly

Validate genome assembly using multiple approaches.

  • Module: Assembly Validation
  • Usage: validate_assembly("contigs.fasta", "reads.fastq")
  • See: Assembly Validation

W

write_fastq

Write sequences to FASTQ files.


Function Categories

Data Acquisition (15 functions)

Functions for downloading and simulating genomic data.

Quality Control (23 functions)

Functions for assessing and improving data quality.

Sequence Analysis (31 functions)

Functions for k-mer analysis and sequence composition.

Genome Assembly (18 functions)

Functions for assembling genomes from sequencing reads.

Assembly Validation (20 functions)

Functions for validating and assessing assembly quality.

Gene Annotation (16 functions)

Functions for predicting and annotating genes.

Comparative Genomics (22 functions)

Functions for comparing genomes and phylogenetic analysis.

Visualization (28 functions)

Functions for creating plots and visualizations.

File I/O (12 functions)

Functions for reading and writing various file formats.

Utilities (25 functions)

Helper functions and utilities.


Total: 210 documented functions

Search Tips

  • By workflow: Use the workflow-specific documentation pages
  • By keyword: Use your browser's search function (Ctrl/Cmd+F)
  • By similarity: Functions with similar names are usually related
  • By module: Functions are grouped by their primary use case

See Also